Oct 25, 2018

Hippocampal theta bursting and waveform shape reflect CA1 spiking patterns

BioRxiv : the Preprint Server for Biology
Scott Robert Cole, Bradley Voytek

Abstract

Brain rhythms are nearly always analyzed in the spectral domain in terms of their power, phase, and frequency. While this conventional approach has uncovered spike-field coupling, as well as correlations to normal behaviors and pathological states, emerging work has highlighted the physiological and behavioral importance of multiple novel oscillation features. Oscillatory bursts, for example, uniquely index a variety of cognitive states, and the nonsinusoidal shape of oscillations relate to physiological changes, including Parkinson's disease. Open questions remain regarding how bursts and nonsinusoidal features relate to circuit-level processes, and how they interrelate. By analyzing unit and local field recordings in the rodent hippocampus, we uncover a number of significant relationships between oscillatory bursts, nonsinusoidal waveforms, and local inhibitory and excitatory spiking patterns. Bursts of theta oscillations are surprisingly related to a decrease in pyramidal neuron synchrony, and have no detectable effect on firing sequences, despite significant increases in neuronal firing rates during periods of theta bursting. Theta burst duration is predicted by the asymmetries of its first cycle, and cycle asymmetries rela...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Patterns
Neurons
Brain
Theta Rhythm
Genus Hippocampus
Structure of Hippocampal Formation
Neuronal
Entire Hippocampus
Interneurons
Pyramidal Cells

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.