May 4, 1976

Histidine ammonia-lyase from rat liver. Purification, properties, and inhibition by substrate analogues

L M Brand, A E Harper


Histidine ammonia-lyase (EC from rat liver was purified more than 250-fold to near homogeneity. Electrophoretic determinations indicated a native molecular weight of approximately 200,000. The enzyme has a pH optimum of approximately pH 8.5. The minimum Km for L-histidine was 0.5 mM at pH 9.0. The Michaelis constant in the physiological pH range was, however, more than 2.0 mM. D-alpha-hydrazinoimidazolylpropionic acid was found to be a potent competitive inhibitor of liver histidine ammonia-lyase (Kis=75 muM); the L enantiomer of this compound was less effective in this regard. The enzyme was also inhibited competitively by L-histidine hydroxamate (Kis=0.4 mM), and to a lesser extent by L-histidinol, D-histidine, and glycine. Failure of a wide variety of other histidine analogues to inhibit the enzyme substantially indicates high specificity of the active site for L-histidine. No alternate substrates were identified for the enzyme. DL-alpha-Hydrazinophenylpropionic acid, the alpha-hydrzino analogue of phenylalanine, was similarly shown to be a very potent competitive inhibitor of a mechanistically similar L-phenylalanine ammonia-lyase purified from Rhodotorula glutinis. The properties of histidine ammonia-lyase from ra...Continue Reading

  • References
  • Citations10


  • We're still populating references for this paper, please check back later.

Mentioned in this Paper

Structure-Activity Relationship
Histidine Ammonia-Lyase
Plasma Protein Binding Capacity
Rhodotorula glutinis
Glycine (Plant)

Related Feeds

Biosynthetic Transformations

Biosyntheic transformtions are multi-step, enzyme-catalyzed processes where substrates are converted into more complex products in living organisms. Simple compounds are modified, converted into other compounds, or joined together to form macromolecules. Discover the latest research on biosynthetic transformations here.