Oct 1, 1975

How do biological systems discriminate among physically similar ions?

The Journal of Experimental Zoology
J M Diamond

Abstract

This paper reviews the history of understanding how biological systems can discriminate so strikingly among physically similar ions, especially alkali cations. Appreciation of qualitative regularities ("permitted sequences") and quantitative regularities ("selectivity isotherms") in ion selectivity grew first from studies of ion exchangers and glass electrodes, then of biological systems such as enzymes and cell membranes, and most recently of lipid bilayers doped with model pores and carriers. Discrimination of ions depends on both electrostatic and steric forces. "Black-box" studies on intact biological membranes have in some cases yielded molecular clues to the structure of the actual biological pores and carriers. Major current problems involve the extraction of these molecules; how to do it, what to do when it is achieved, and how (and if) it is relevant to the central problems of membrane function. Further advances are expected soon from studies of rate barriers within membranes, of voltage-dependent ("excitable") conducting channels, and of increasingly complex model systems and biological membranes.

  • References48
  • Citations2
  • References48
  • Citations2

Citations

Mentioned in this Paper

Biological Membrane
Membrane by Function
Tissue Membrane
Enzymes, antithrombotic
Calcium
Valinomycin
Potassium
Ouabain
Cations
Enzymes for Treatment of Wounds and Ulcers

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Signaling in Adult Neurogenesis

Neural stem cells play a critical role in the production of neuronal cells in neurogenesis is of great importance. Of interest is the role signalling mechanisms in adult neurogenesis. Discover the latest research on signalling in adult neurogenesis.

Psychiatric Chronotherapy

Psychiatric Chronotherapy considers the circadian rhythm as a major factor for optimizing therapeutic efficacy of psychiatric interventions. Discover the latest research on Psychiatric Chronotherapy here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.