PMID: 26405Apr 27, 1978

How much is secondary structure responsible for resistance of double-stranded RNA to pancreatic ribonuclease A?

Biochimica Et Biophysica Acta
M Libonati, M Palmieri


1. Double-stranded f2 sus11 or Qbeta RNAs, resistant to bovine pancreatic RNAase A in 0.15 M NaCl/0.015 M sodium citrate (SSC), are quickly and completely degraded at 10-fold lower ionic strength (0.1 X SSC) under otherwise similar conditions. At this ionic strength the secondary structure of double-stranded RNA is maintained, as judged by the following: (a) the unchanged resistance of double-stranded RNA and DNA, under similar low ionic strength conditions, to nuclease S1 from Aspergillus oryzae, in contrast with the sensitivity of the corresponding denatured nucleic acids to this enzyme, specific for single-stranded RNA and DNA; (b) the co-operative pattern of the thermal-transition profile of double-stranded RNA (with a Tm of 89 degrees C) in 0.1 X SSC. 2. Whereas in SSC bovine seminal RNAase (RNAase BS-1) and whale pancreatic RNAase show an activity on double-stranded RNA significantly higher than that of RNAase A, in 0.1 X SSC the activity of the latter enzyme on this substrate becomes distinctly higher than that of RNAase BS-1, and similar to that of whale RNAase. 3. From these results it is deduced that the secondary structure is probably not the only nor the most important variable in determining the susceptibility doub...Continue Reading


Mar 1, 1977·Proceedings of the National Academy of Sciences of the United States of America·P Douzou, P Maurel
Feb 10, 1976·Biochemistry·D WangS Moore
Oct 1, 1963·Proceedings of the National Academy of Sciences of the United States of America·G FELSENFELDP H VONHIPPEL


Jul 17, 2007·Biochemical and Biophysical Research Communications·Punyatirtha DeyJanendra K Batra
Aug 26, 1980·Biochimica Et Biophysica Acta·S SorrentinoM Libonati
Jan 1, 1981·Scandinavian Journal of Immunology·J JonssonR Norberg
May 1, 1982·European Journal of Biochemistry·S SorrentinoM Libonati

Related Concepts

Aspergillus oryzae
DNA, Double-Stranded
Hot Temperature
Hydrogen-Ion Concentration
DNA Conformation
RNA Denaturation
Nucleotides, Cyclic

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

The Tendon Seed Network

Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Long COVID-19

“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.