May 10, 2017

How Sample Size Influences The Replicability Of Task-Based fMRI

BioRxiv : the Preprint Server for Biology
Benjamin O TurnerAron K Barbey

Abstract

Despite a growing body of research suggesting that task-based functional magnetic resonance imaging (fMRI) studies often suffer from a lack of statistical power due to too-small samples, the proliferation of such underpowered studies continues unabated. Using large independent samples across eleven distinct tasks, we demonstrate the impact of sample size on replicability, assessed at different levels of analysis relevant to fMRI researchers. We find that the degree of replicability for typical sample sizes is modest and that sample sizes much larger than typical (e.g., N=100) produce results that fall well short of perfectly replicable. Thus, our results join the existing line of work advocating for larger sample sizes. Moreover, because we test sample sizes over a fairly large range and use intuitive metrics of replicability, our hope is that our results are more understandable and convincing to researchers who may have found previous results advocating for larger samples inaccessible.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Research
Magnetic Resonance Imaging
Virus Replication
Research Personnel
Cell Proliferation
FMRI
Analysis
Proliferation (Morphologic Abnormality)
Metric

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.