DOI: 10.1101/005793Jun 3, 2014Paper

How the tortoise beats the hare: Slow and steady adaptation in structured populations suggests a rugged fitness landscape in bacteria

BioRxiv : the Preprint Server for Biology
Joshua R NahumBenjamin Kerr

Abstract

Abstract In the context of Wright’s adaptive landscape, genetic epistasis can yield a multipeaked or “rugged” topography. In an unstructured population, a lineage with selective access to multiple peaks is expected to rapidly fix on one, which may not be the highest peak. Contrarily, beneficial mutations in a population with spatially restricted migration take longer to fix, allowing distant parts of the population to explore the landscape semi-independently. Such a population can simultaneous discover multiple peaks and the genotype at the highest discovered peak is expected to fix eventually. Thus, structured populations sacrifice initial speed of adaptation for breadth of search. As in the Tortoise-Hare fable, the structured population (Tortoise) starts relatively slow, but eventually surpasses the unstructured population (Hare) in average fitness. In contrast, on single-peak landscapes (e.g., systems lacking epistasis), all uphill paths converge. Given such “smooth” topography, breadth of search is devalued, and a structured population only lags behind an unstructured population in average fitness (ultimately converging). Thus, the Tortoise-Hare pattern is an indicator of ruggedness. After verifying these predictions in sim...Continue Reading

Related Concepts

Related Feeds

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.