Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism

BioRxiv : the Preprint Server for Biology
Fadi JacobGuo-Li Ming

Abstract

Neurological complications are common in patients with COVID-19. While SARS-CoV-2, the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function are not well understood, and experimental models using human brain cells are urgently needed. Here we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found modest numbers of infected neurons and astrocytes, but greater infection of choroid plexus epithelial cells. We optimized a protocol to generate choroid plexus organoids from hiPSCs, which revealed productive SARS-CoV-2 infection that leads to increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our results provide evidence for SARS-CoV-2 neurotropism and support use of hiPSC-derived brain organoids as a platform to investigate the cellular susceptibility, disease mechanisms, and treatment strategies for SARS-CoV-2 infection.

Methods Mentioned

BETA
transgenic
RNA-seq
biopsies

Related Concepts

Related Feeds

3D Cellular Models of Brain and Neurodegeneration

Brain organoids are three-dimensional in vitro cellular models of the brain that can recapitulate many processes such as the neurodevelopment. In addition, these organoids can be combined with other cell types, such as neurons and astrocytes to study their interactions in assembloids. Disease processes can also be modeled by induced pluripotent stem cell-derived organoids and assembloids from patients with neurodegenerative disorders. Discover the latest research on the models here.

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Brain Organoids in Disease Modeling

Brain organoids are three-dimensional cell culture models derived from human pluripotent stem cells. Since they resemble the embryonic brain, they can be used to help study brain biology, early brain development, and brain diseases. Discover the latest research on brain organoids in disease modeling here.