Mar 26, 2009

Hydrogen multicenter bonds and reversible hydrogen storage

The Journal of Chemical Physics
P TarakeshwarNaduvalath Balakrishnan

Abstract

A new strategy for reversible hydrogen storage based on the properties of hydrogen multicenter bonds is proposed. This is demonstrated by carrying out ab initio calculations of hydrogen saturation of titanium and bimetallic titanium-aluminum nanoclusters. Hydrogen saturation leads to the formation of exceptionally and energetically stable hydrogen multicenter bonds. The stabilization results from sharing of the hydrogen atom electron density with the frontier orbitals of the metal cluster. The strength of the hydrogen multicenter bonds can be modulated either by varying the degree of hydrogen loading or by suitable alloying. Mode-specific infrared excitation of the vibrational modes associated with the multicenter hydrogen bonds can release the adsorbed hydrogen, thereby enabling efficient reversible hydrogen storage. The possible formation of hydrogen multicenter bonds involving titanium atoms and its implication to hydrogen adsorption/desorption kinetics in hydrogen cycled Ti-doped NaAlH(4) is also discussed.

  • References44
  • Citations1

References

  • References44
  • Citations1

Citations

Mentioned in this Paper

Aluminum Measurement
Electron Density
Adsorption

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Signaling in Adult Neurogenesis

Neural stem cells play a critical role in the production of neuronal cells in neurogenesis is of great importance. Of interest is the role signalling mechanisms in adult neurogenesis. Discover the latest research on signalling in adult neurogenesis.

Psychiatric Chronotherapy

Psychiatric Chronotherapy considers the circadian rhythm as a major factor for optimizing therapeutic efficacy of psychiatric interventions. Discover the latest research on Psychiatric Chronotherapy here.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Related Papers

The Journal of Chemical Physics
T J Dhilip KumarNaduvalath Balakrishnan
Angewandte Chemie
José M Bellosta von ColbeF Schüth
The Journal of Physical Chemistry. B
L G ScanlonM Tsao
The Journal of Physical Chemistry. a
P TarakeshwarNaduvalath Balakrishnan
© 2020 Meta ULC. All rights reserved