Oct 26, 2018

Hypermorphic SERK1 mutations function via a SOBIR1 pathway to activate floral abscission signaling

BioRxiv : the Preprint Server for Biology
Isaiah TaylorJohn C Walker

Abstract

In Arabidopsis, the abscission of floral organs is regulated by two related receptor-like protein kinases (RLKs), HAESA and HAESA-like 2 (HAE/HSL2). HAE/HSL2, in complex with members of the SERK family of coreceptor protein kinases, are activated by the binding of the proteolytically processed peptide ligand IDA. This leads to expression of genes encoding secreted cell wall remodeling and hydrolase enzymes. hae hsl2 mutants fail to induce expression of these genes and retain floral organs indefinitely. In this paper we report identification of an allelic series of hae hsl2 suppressor mutations in the SERK1 coreceptor protein kinase gene. Genetic and transcriptomic evidence indicates these alleles represent a novel class of gain of function mutations that activate signaling independent of HAE/HSL2. We show that the suppression effect surprisingly does not rely on protein kinase activity of SERK1, and that activation of signaling relies on the RLK gene SOBIR1. The effect of these mutations can be mimicked by loss of function of BIR1, a known negative regulator of SERK-SOBIR1 signaling. These results suggest BIR1 functions to negatively regulate SERK-SOBIR1 signaling during abscission, and that the identified SERK1 mutations likel...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biochemical Pathway
Genes
Enzymes, antithrombotic
Arabidopsis
Regulation of Biological Process
Regulation of Floral Organ Abscission by Signal Transduction
Gene Mutation
KCNJ11
IDUA
Organ

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.