Jun 8, 2018

Identification of Differentially Expressed Genes Induced by Aberrant Methylation in Oral Squamous Cell Carcinomas Using Integrated Bioinformatic Analysis

International Journal of Molecular Sciences
Xiaoqi ZhangMinqi Li

Abstract

Oral squamous cell carcinoma (OSCC) is a malignant disease. Methylation plays a key role in the etiology and pathogenesis of OSCC. The goal of this study was to identify aberrantly methylated differentially expressed genes (DEGs) in OSCCs, and to explore the underlying mechanisms of tumorigenesis by using integrated bioinformatic analysis. Gene expression profiles (GSE30784 and GSE38532) were analyzed using the R software to obtain aberrantly methylated DEGs. Functional enrichment analysis of screened genes was performed using the DAVID software. Protein⁻protein interaction (PPI) networks were constructed using the STRING database. The cBioPortal software was used to exhibit the alterations of genes. Lastly, we validated the results with the Cancer Genome Atlas (TCGA) data. Twenty-eight upregulated hypomethylated genes and 24 downregulated hypermethylated genes were identified. These genes were enriched in the biological process of regulation in immune response, and were mainly involved in the PI3K-AKT and EMT pathways. Additionally, three upregulated hypomethylated oncogenes and four downregulated hypermethylated tumor suppressor genes (TSGs) were identified. In conclusion, our study indicated possible aberrantly methylated DE...Continue Reading

Mentioned in this Paper

Computer Software
Biological Markers
Study
Immune Response
Pathogenic Aspects
Biochemical Pathway
Gene Expression Regulation, Neoplastic
Proton Pump Inhibitors
The Cancer Genome Atlas
Tumor Suppressor Genes

Related Feeds

Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.

Cancer Epigenetics and Senescence (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may be involved in regulating senescence in cancer cells. This feed captures the latest research on cancer epigenetics and senescence.

AKT Pathway

This feed focuses on the AKT serine/threonine kinase, which is an important signaling pathway involved in processes such as glucose metabolism and cell survival.

Cancer Epigenetics & Methyl-CpG (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. Here is the latest research on cancer epigenetics and methyl-CpG binding proteins including ZBTB38.

Carcinoma, Squamous Cell

Basal cell carcinoma is a form of malignant skin cancer found on the head and neck regions and has low rates of metastasis. Discover the latest research on basal cell carcinoma here.

Cancer Epigenetics & Metabolism (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on the relationship between cell metabolism, epigenetics and tumor differentiation.

Cancer Epigenetics

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.

Cell Signaling & Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. This feed covers the latest research on signaling and epigenetics in cell growth and cancer.