Sep 25, 2015

Identification of novel proteins differentially expressed in pluripotent embryonic stem cells and differentiated cells

The Journal of Medical Investigation : JMI
Kei EnomotoAkira Kurisaki


Mammalian pluripotent stem cells possess properties of self-renewal and pluripotency. These abilities are maintained by the strict regulation of pluripotent stem cell-specific transcription factor network and unique properties of chromatin in the stem cells. Although these major signaling pathways robustly control the characteristics of stem cells, other regulatory factors, such as metabolic pathways, are also known to modulate stem cell proliferation and differentiation. In this study, we fractionated protein samples from mouse embryonic stem (ES) cells cultured with or without the leukemia inhibitory factor (LIF). Protein expression was quantified by 2-dimensional differential gel electrophoresis (2D-DIGE). In total, 44 proteins were identified as being differentially expressed in the pluripotent stem cells and the differentiated cells. Surprisingly, half of the identified proteins were the proteins localized in mitochondria, which supply cellular energy and regulate cell cycle, development, and cell death. Some of these identified proteins are involved in the metabolic function and the regulation of pluripotency. Further analysis of the identified proteins could provide new information for the manipulation of pluripotency in...Continue Reading

  • References19
  • Citations2


Mentioned in this Paper

Metabolic Process, Cellular
Biochemical Pathway
Energy Transfer
Pluripotent Stem Cells
Regulation of Biological Process
Cell Proliferation

Related Feeds

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.