DOI: 10.1101/456483Oct 29, 2018Paper

Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies

BioRxiv : the Preprint Server for Biology
Pradeep Sundaram RajendranKalyanam Shivkumar

Abstract

Heart rate is under the precise control of the autonomic nervous system. However, the wiring of peripheral neural circuits that regulate heart rate is poorly understood. Here, we developed a clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and employed a multi-technique approach to map parasympathetic and sympathetic neural circuits that control heart rate in mice. We anatomically and functionally identify cholinergic neurons and noradrenergic neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to the sinoatrial node. We also report that the heart rate response to optogenetic versus electrical stimulation of the vagus nerve displays different temporal characteristics and that vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via central mechanisms. Our findings provide new insights into neural regulation of heart rate, and our methodology to study cardiac circuits can be readily used to interrogate neural control of other visceral organs.

Related Concepts

Related Feeds

Cell-Type Specific Viral Vectors

Viral vectors are used in biological research and therapy to deliver genetic material into cells. However, the efficiency of viral vectors varies depending on the cell type. Here is the latest research on cell-type-specific viral vectors.

Researcher Network:CZI Neurodegeneration Challenge

The Neurodegeneration Challenge Network aims to provide funding for and to bring together researchers studying neurodegenerative diseases. Find the latest research from the NDCN grantees here.

Cell-Type-Specific Viral Vectors

Viral vectors are used in biological research and therapy to deliver genetic material into cells. However, the efficiency of viral vectors varies depending on the cell type. Here is the latest research on cell-type-specific viral vectors.

Cardiac Regeneration

Cardiac regeneration enables the repair of irreversibly damaged heart tissue using cutting-edge science, including stem cell and cell-free therapy. Discover the latest research on cardiac regeneration here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cardiac Electrophysiology

Cardiac electrophysiology is the study of electrical activities of the heart and includes the assessment, diagnosis, and treatment of cardiac events. Find the latest research on cardiac electrophysiology here.

Cell-Type-Specific Viral Vectors (ASM)

Viral vectors are used in biological research and therapy to deliver genetic material into cells. However, the efficiency of viral vectors varies depending on the cell type. Here is the latest research on cell-type-specific viral vectors.