Identification of the aspartic acid residue located at or near substrate-binding site of rye seed chitinase-c

Bioscience, Biotechnology, and Biochemistry
T Yamagami, G Funatsu


Carboxyl groups of rye seed chitinase-c (RSC-c) were modified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glycine ethyl ester (GEE) at pH 5.5 and 5 degrees C in the presence and absence of (GlcNAc)4. In the absence of (GlcNAc)4, 5.2 carboxyl groups were modified by 90 min-reaction and the chitinase activity was reduced to 2.0%, while in the presence of (GlcNAc)4, 4.6 carboxyl groups were modified and 72% of the activity was retained. To identify the carboxyl group protected by (GlcNAc)4 from the modification, RSC-c was first modified with EDC and GEE in the presence of (GlcNAc)4 and then radiolabeled with EDC and [14C]GEE in the absence of (GlcNAc)4. Analyses of the radioactive peptides from the tryptic and chymotryptic digests of radiolabeled RSC-c showed that the main radiolabeled carboxyl group is that of Asp95, suggesting that Asp95 is located at or near substrate-binding site of RSC-c.


Jul 1, 1969·Canadian Journal of Microbiology·J Monreal, E T Reese
Jan 5, 1993·Journal of Molecular Biology·P J HartJ D Robertus

Related Concepts

Aspartic Acid, Magnesium-Potassium (2:1:2) Salt
Glycine (Plant)
Ligand Binding Domain
Chitinase Activity
Ethyldimethylaminopropyl Carbodiimide

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.