Imaging individual spindle microtubule dynamics in fission yeast

Methods in Cell Biology
Judite CostaPhong T Tran


Microtubules exhibit dynamic instability, stochastically switching between infrequent phases of growth and shrinkage. In the cell, microtubule dynamic instability is further modulated by microtubule-associated proteins and motors, which are specifically tuned to cell cycle stages. For example, mitotic microtubules are more dynamic than interphase microtubules. The different parameters of microtubule dynamics can be measured from length versus time data, which are generally obtained from time-lapse acquisition using the optical microscope. The typical maximum resolution of the optical microscope is ~λ/2 or ~300 nm. This scale represents a challenge for imaging fission yeast microtubule dynamics specifically during early mitosis, where the bipolar mitotic spindle contains many short dynamic microtubules of ~1-μm scale. Here, we present a novel method to image short fission yeast mitotic microtubules. The method uses the thermosensitive reversible kinesin-5 cut7.24(ts) to create monopolar spindles, where asters of individual mitotic microtubules are presented for imaging and subsequent analysis.


Sep 26, 2014·Molecular Biology of the Cell·Judite CostaPhong T Tran
Jul 25, 2014·Molecular Biology of the Cell·Fan ZhengChuanhai Fu

Related Concepts

Immunofluorescence Microscopy
Meiotic Spindle Apparatus
Schizosaccharomyces pombe
Cell Cycle
Diagnostic Imaging
Microtubule Proteins
Microtubule-Associated Proteins

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Computational Methods for Protein Structures

Computational methods employing machine learning algorithms are powerful tools that can be used to predict the effect of mutations on protein structure. This is important in neurodegenerative disorders, where some mutations can cause the formation of toxic protein aggregations. This feed follows the latests insights into the relationships between mutation and protein structure leading to better understanding of disease.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.