Improved Algorithms for Allen's Interval Algebra: a Dynamic Programming Approach

Victor Lagerkvist, Leif Eriksson


The constraint satisfaction problem (CSP) is an important framework in artificial intelligence used to model e.g. qualitative reasoning problems such as Allen's interval algebra A. There is strong practical incitement to solve CSPs as efficiently as possible, and the classical complexity of temporal CSPs, including A, is well understood. However, the situation is more dire with respect to running time bounds of the form O(f(n)) (where n is the number of variables) where existing results gives a best theoretical upper bound 2^O(n * log n) which leaves a significant gap to the best (conditional) lower bound 2^o(n). In this paper we narrow this gap by presenting two novel algorithms for temporal CSPs based on dynamic programming. The first algorithm solves temporal CSPs limited to constraints of arity three in O(3^n) time, and we use this algorithm to solve A in O((1.5922n)^n) time. The second algorithm tackles A directly and solves it in O((1.0615n)^n), implying a remarkable improvement over existing methods since no previously published algorithm belongs to O((cn)^n) for any c. We also extend the latter algorithm to higher dimensions box algebras where we obtain the first explicit upper bound.

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.


Blastomycosis fungal infections spread through inhaling Blastomyces dermatitidis spores. Discover the latest research on blastomycosis fungal infections here.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.


Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.

© 2021 Meta ULC. All rights reserved