Aug 2, 2016

Improved long read correction for de novo assembly using an FM-index

BioRxiv : the Preprint Server for Biology
James M HoltLeonard McMillan

Abstract

Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging “hybrid” assemblies that use long reads for scaffolding and short reads for accuracy. To this end, we describe a novel application of a multi-string Burrows-Wheeler transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We show that our method efficiently produces significantly higher quality corrected sequence than existing hybrid error-correction methods. We demonstrate the effectiveness of our method compared to state-of-the-art hybrid and long-read only de novo assembly methods.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Research
Genome
Nucleic Acid Sequencing
Genomics
Sequencing
Reading Frames (Nucleotide Sequence)
Data Types - String
Landscapes
Molecular Assembly/Self Assembly

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.