PMID: 10816012May 18, 2000Paper

Improved QSARs for predictive toxicology of halogenated hydrocarbons

Computers & Chemistry
S TrohalakiR Pachter


In our continuing efforts to provide a predictive toxicology capability, we seek to improve QSARs (quantitative structure-activity relationships) for chemicals of interest. Currently, although semi-empirical molecular orbital methods are hardly the state of the art for studying small molecules, AM1 calculations appear to be the method of choice when calculating quantum-chemical descriptors. However, with the advent of modern computational capabilities and the development of fast algorithms, ab initio molecular orbital and first principles density functional methods can be expeditiously applied in current QSAR studies. We present a study on halogenated alkanes to assess whether more accurate quantum methods result in QSARs that correlate better with experimental data. Furthermore, improved QSARs can also be obtained through development of new descriptors with explicit physical interpretations that should lead to better understanding of the mechanisms involved in the toxic response. We show that descriptors calculated from chemical intermediates may be useful in future QSARs.


Feb 17, 2001·Journal of Mass Spectrometry : JMS
Sep 22, 2001·Toxicology in Vitro : an International Journal Published in Association with BIBRA·K T Geiss, J M Frazier
May 16, 2003·SAR and QSAR in Environmental Research·S Trohalaki, R Pachter
May 25, 2004·Journal of Chemical Information and Computer Sciences·Steven TrohalakiJohn M Frazier
Feb 8, 2008·Chemical Research in Toxicology·Elton ZvinavasheIvonne M C M Rietjens
Mar 22, 2014·Chemical Research in Toxicology·Sergio ManzettiDavid van der Spoel

❮ Previous
Next ❯

Related Concepts

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Epigenetics Insights from Twin Studies

Find the latest research on epigenetics and twin studies here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.