Mar 19, 2013

Improved reversible jump algorithms for Bayesian species delimitation

Genetics
Bruce Rannala, Ziheng Yang

Abstract

Several computational methods have recently been proposed for delimiting species using multilocus sequence data. Among them, the Bayesian method of Yang and Rannala uses the multispecies coalescent model in the likelihood framework to calculate the posterior probabilities for the different species-delimitation models. It has a sound statistical basis and is found to have nice statistical properties in simulation studies, such as low error rates of undersplitting and oversplitting. However, the method suffers from poor mixing of the reversible-jump Markov chain Monte Carlo (rjMCMC) algorithms. Here, we describe several modifications to the algorithms. We propose a flexible prior that allows the user to specify the probability that each node on the guide tree represents a true speciation event. We also introduce modifications to the rjMCMC algorithms that remove the constraint on the new species divergence time when splitting and alter the gene trees to remove incompatibilities. The new algorithms are found to improve mixing of the Markov chain for both simulated and empirical data sets.

  • References12
  • Citations58

References

  • References12
  • Citations58

Citations

Mentioned in this Paper

In Silico
Lizards
Monte Carlo Method
Bayesian Prediction
Markov Chains
Posterior Pituitary Disease
Online Mendelian Inheritance In Man

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Proceedings of the National Academy of Sciences of the United States of America
Ziheng Yang, Bruce Rannala
Molecular Phylogenetics and Evolution
Prashant P SharmaGonzalo Giribet
© 2020 Meta ULC. All rights reserved