Improving the accuracy of protein pKa calculations: conformational averaging versus the average structure
Abstract
Several methods for including the conformational flexibility of proteins in the calculation of titration curves are compared. The methods use the linearized Poisson-Boltzmann equation to calculate the electrostatic free energies of solvation and are applied to bovine pancreatic trypsin inhibitor (BPTI) and hen egg-white lysozyme (HEWL). An ensemble of conformations is generated by a molecular dynamics simulation of the proteins with explicit solvent. The average titration curve of the ensemble is calculated in three different ways: an average structure is used for the pKa calculation; the electrostatic interaction free energies are averaged and used for the pKa calculation; and the titration curve for each structure is calculated and the curves are averaged. The three averaging methods give very similar results and improve the pKa values to approximately the same degree. This suggests, in contrast to implications from other work, that the observed improvement of pKa values in the present studies is due not to averaging over an ensemble of structures, but rather to the generation of a single properly averaged structure for the pKa calculation.
References
Citations
Conformational relaxation and water penetration coupled to ionization of internal groups in proteins
Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme
Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins
Inhibition mechanism exploration of quinoline derivatives as PDE10A inhibitors by in silico analysis
Related Concepts
Related Feeds
Bacterial Cell Wall Structure (ASM)
Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.
Bacterial Cell Wall Structure
Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.