Improving the Efficiency of Genomic Selection in Chinese Simmental beef cattle

BioRxiv : the Preprint Server for Biology
Jiangwei XiaHuijiang Gao

Abstract

Genomic selection is an accurate and efficient method of estimating genetic merits by using high-density genome-wide single nucleotide polymorphisms (SNPs).In this study, we investigate an approach to increase the efficiency of genomic prediction by using genome-wide markers. The approach is a feature selection based on genomic best linear unbiased prediction (GBLUP),which is a statistical method used to predict breeding values using SNPs for selection in animal and plant breeding. The objective of this study is the choice of kinship matrix for genomic best linear unbiased prediction (GBLUP).The G-matrix is using the information of genome-wide dense markers. We compare three kinds of kinships based on different combinations of centring and scaling of marker genotypes.And find a suitable kinship approach that adjusts for the resource population of Chinese Simmental beef cattle.Single nucleotide polymorphism (SNPs) can be used to estimate kinship matrix and individual inbreeding coefficients more accurately. So in our research a genomic relationship matrix was developed for 1059 Chinese Simmental beef cattle using 640000 single nucleotide polymorphisms and breeding values were estimated using phenotypes about Carcass weight and S...Continue Reading

Related Concepts

Biological Markers
Breeding
Extracellular Matrix
Genome
Inbreeding
Research
Selection, Genetic
Cattle for beef production
Single Nucleotide Polymorphism
Genomics

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.