In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly
Abstract
Eukaryotic cells rely on a surveillance mechanism, the "Spindle Assembly Checkpoint"SACM in order to ensure accurate chromosome segregation by preventing anaphase initiation until all chromosomes are correctly attached to the mitotic spindle. In different organisms, a mitotic checkpoint complex (MCC) composed of Mad2, Bub3, BubR1/Mad3, and Cdc20 inhibits the anaphase promoting complex (APC/C) to initiate promotion into anaphase. The mechanism of MCC formation and its regulation by the kinetochore are unclear. Here, we constructed dynamical models of MCC formation involving different kinetochore control mechanisms including amplification as well as inhibition effects, and analysed their quantitative properties. In particular, in this system, fast and stable metaphase to anaphase transition can only be triggered when the kinetochore controls the Bub3:BubR1-related reactions; signal amplification and inhibition play a subordinate role. Furthermore, when introducing experimentally determined parameter values into the models analysed here, we found that effective MCC formation is not combined with complete Cdc20 sequestering. Instead, the MCC might bind and completely block the APC/C. The SACM might function by an MCC:APC/C complex ...Continue Reading
References
Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication
Citations
Related Concepts
Related Feeds
Cell Checkpoints & Regulators
Cell cycle checkpoints are a series of complex checkpoint mechanisms that detect DNA abnormalities and ensure that DNA replication and repair are complete before cell division. They are primarily regulated by cyclins, cyclin-dependent kinases, and the anaphase-promoting complex/cyclosome. Here is the latest research.