PMID: 44702Nov 1, 1979

In vitro adherence of radioactively labeled Escherichia coli in normal and cystitis-prone females

Infection and Immunity
C L ParsonsJ D Schmidt

Abstract

Numerous investigators report data obtained using an in vitro quantitative assay for measuring bacterial adherence to epithelial cells. We found this assay to contain significant sources of error in the large variation in number of bacteria bound per cell and in the dependence on the investigator's visual counting of bacteria bound per cell. In the modified assay described here, we eliminated the need for visual counting of bacteria by incorporating the use of radioactively labeled Escherichia coli. This allowed quantitation of bacterial adherence to as many as 50,000 vaginal cells, whereas the visual counting system limits the determination to perhaps 50 cells. We feel that the use of radioactively labeled bacteria in place of the visual counting system increases the validity and sensitivity of this assay. Using the modified method, we found no statistically significant differences among values for adherence of E. coli type 04 to the vaginal cells of control and cystitis-prone women at either pH 6.4 or 4.0.

Related Concepts

Adhesiveness
Bacteriological Techniques
Carbon Radioisotopes
Cystitis
Mesothelium
Alkalescens-Dispar Group
Escherichia Coli Infections
Hydrogen-Ion Concentration
Physiology
Vagina

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.