Jan 13, 2004

In vivo expansion of gene-modified hematopoietic cells by a novel selective amplifier gene utilizing the erythropoietin receptor as a molecular switch

The Journal of Gene Medicine
Takeyuki NagashimaM Hasegawa


In vivo expansion of gene-modified cells would be a promising approach in the field of hematopoietic stem cell gene therapy. To this end, we previously developed a selective amplifier gene (SAG), a chimeric gene encoding the granulocyte colony-stimulating factor (G-CSF) receptor (GCR), as a growth-signal generator and the hormone-binding domain of the steroid receptor as a molecular switch. We have already reported that hematopoietic cells retrovirally transduced with the SAG can be expanded in a steroid-dependent manner in vitro and in vivo in mice and nonhuman primates. In this study, we have developed a new-generation SAG, in which the erythropoietin (EPO) receptor (EPOR) is utilized instead of the steroid receptor as a molecular switch. Two EPO-driven SAGs were constructed, EPORGCR and EPORMpl, containing the GCR and c-Mpl as a signal generator, respectively. First, to compare the steroid-driven and EPO-driven SAGs, Ba/F3 cells were transduced with these SAGs. Next, to examine whether GCR or c-Mpl is the more suitable signal generator of the EPO-driven SAG, human cord blood CD34(+) cells were transduced with the two EPO-driven SAGs (EPORMpl and EPORGCR). Finally, we examined the in vivo efficacy of EPORMpl in mice. Irradiat...Continue Reading

  • References
  • Citations9


  • We're still populating references for this paper, please check back later.
  • References
  • Citations9


Mentioned in this Paper

Granulocyte Colony-stimulating Factor Binding
Shuttle Vectors
Nonhuman primate
Epoetin Alfa
Gene Amplification
Granulocyte Colony-Stimulating Factor
Erythropoietin Measurement
MPL wt Allele
KIT wt Allele

Related Feeds

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.

Allogenic & Autologous Therapies

Allogenic therapies are generated in large batches from unrelated donor tissues such as bone marrow. In contrast, autologous therapies are manufactures as a single lot from the patient being treated. Here is the latest research on allogenic and autologous therapies.

Blood And Marrow Transplantation

The use of hematopoietic stem cell transplantation or blood and marrow transplantation (bmt) is on the increase worldwide. BMT is used to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Here is the latest research on bone and marrow transplantation.