Aug 12, 2016

Inactivation of SmeSyRy Two-Component Regulatory System Inversely Regulates the Expression of SmeYZ and SmeDEF Efflux Pumps in Stenotrophomonas maltophilia

PloS One
Chao-Jung WuTsuey-Ching Yang

Abstract

SmeYZ efflux pump is a critical pump responsible for aminoglycosides resistance, virulence-related characteristics (oxidative stress susceptibility, motility, and secreted protease activity), and virulence in Stenotrophomonas maltophilia. However, the regulatory circuit involved in SmeYZ expression is little known. A two-component regulatory system (TCS), smeRySy, transcribed divergently from the smeYZ operon is the first candidate to be considered. To assess the role of SmeRySy in smeYZ expression, the smeRySy isogenic deletion mutant, KJΔRSy, was constructed by gene replacement strategy. Inactivation of smeSyRy correlated with a higher susceptibility to aminoglycosides concomitant with an increased resistance to chloramphenicol, ciprofloxacin, tetracycline, and macrolides. To elucidate the underlying mechanism responsible for the antimicrobials susceptibility profiles, the SmeRySy regulon was firstly revealed by transcriptome analysis and further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and promoter transcription fusion constructs assay. The results demonstrate that inactivation of smeRySy decreased the expression of SmeYZ pump and increased the expression of SmeDEF pump, which underlies the Δsm...Continue Reading

Mentioned in this Paper

Tetracycline Antibiotics
Real-Time Polymerase Chain Reaction
Kitasamycin
Tetracyclines
Gene Expression Regulation, Bacterial
Aminoglycoside [EPC]
Bacterial cell
Bacterial Proteins
Remnant
Hydrogen Peroxide

Related Feeds

Bacterial Transport Proteins (ASM)

Bacterial transport proteins facilitate active and passive transport of small molecules and solutes across the bacterial membrane. Here is the latest research.

Antifungals (ASM)

An antifungal, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycosis such as athlete's foot, ringworm, candidiasis, cryptococcal meningitis, and others. Discover the latest research on antifungals here.

Bacterial Transport Proteins

Bacterial transport proteins facilitate active and passive transport of small molecules and solutes across the bacterial membrane. Here is the latest research.

Antifungals

An antifungal, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycosis such as athlete's foot, ringworm, candidiasis, cryptococcal meningitis, and others. Discover the latest research on antifungals here.

Aminoglycosides (ASM)

Aminoglycoside is a medicinal and bacteriologic category of traditional Gram-negative antibacterial medications that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside. Discover the latest research on aminoglycoside here.

Antimicrobial Resistance (ASM)

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.

Aminoglycosides

Aminoglycoside is a medicinal and bacteriologic category of traditional Gram-negative antibacterial medications that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside. Discover the latest research on aminoglycoside here.

Bacterial Protein Structures

Bacterial protein structures can expedite the development of novel antibiotics. Here is the latest research on bacterial proteins and the resolution of their structures.

Antimicrobial Resistance

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.