Apr 28, 2020

Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin.

BioRxiv : the Preprint Server for Biology
C. Mycroft-WestMark A Skidmore

Abstract

The dependence of the host on the interaction of hundreds of extracellular proteins with the cell surface glycosaminoglycan heparan sulphate (HS) for the regulation of homeostasis is exploited by many microbial pathogens as a means of adherence and invasion. The closely related polysaccharide heparin, the widely used anticoagulant drug, which is structurally similar to HS and is a common experimental proxy, can be expected to mimic the properties of HS. Heparin prevents infection by a range of viruses if added exogenously, including S-associated coronavirus strain HSR1 and here, we show that the addition of heparin (100 g.ml-1) to Vero cells inhibits invasion by SARS-CoV-2 by 70%. We also demonstrate that heparin binds to the Spike (S1) protein receptor binding domain and induces a conformational change, illustrated by surface plasmon resonance and circular dichroism spectroscopy studies. The structural features of heparin on which this interaction depends were investigated using a library of heparin derivatives and size-defined fragments. Binding is more strongly dependent on the presence of 2-O or 6-O sulphation, and the consequent conformational consequences in the heparin structure, than on N-sulphation. A hexasaccharide is...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Embryo
1,1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)bis-4-(3-methyl-2,3-dihydro(benzo-1,3-thiazole)-2-methylidene)quinolinium
Entire Optic Nerve
Ganglion Cell
Entire Retina
Entire Nervous System
Neurons
Retinal Diseases
Microtubules
Retinaldehyde

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.