Induction of p53-independent apoptosis by simian virus 40 small t antigen
Abstract
Simian virus 40 small t antigen (st) is required for optimal transformation and replication properties of the virus. We find that in certain cell types, such as the human osteosarcoma cell line U2OS, st is capable of inducing apoptosis, as evidenced by a fragmented nuclear morphology and positive terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining of transfected cells. The cell death can be p53 independent, since it also occurs in p53-deficient H1299 cells. Genetic analysis indicates that two specific mutants affect apoptosis induction. One of these (C103S) has been frequently used as a PP2A binding mutant. The second mutant (TR4) lacks the final four amino acids of st, which have been reported to be unimportant for PP2A binding in vitro. However, TR4 unexpectedly fails to bind PP2A in vivo. Furthermore, a long-term colony assay reveals a potent colony inhibition upon st expression, and the behavior of st mutants in this assay reflects the relative frequency of nuclear fragmentation observed in transfections using the same mutants. Notably, either Bcl-2 coexpression or broad caspase inhibitor treatment could restore normal nuclear morphology. Finally, fluorescence-activated cell sorting analysis sugges...Continue Reading
References
Simian virus 40 functions required for the establishment and maintenance of malignant transformation
Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate AP-1 activity
Regulation of apoptosis in transgenic mice by simian virus 40 T antigen-mediated inactivation of p53
Citations
FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15
Related Concepts
Related Feeds
Apoptotic Caspases
Apoptotic caspases belong to the protease enzyme family and are known to play an essential role in inflammation and programmed cell death. Here is the latest research.
Apoptosis
Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis
BCL-2 Family Proteins
BLC-2 family proteins are a group that share the same homologous BH domain. They play many different roles including pro-survival signals, mitochondria-mediated apoptosis and removal or damaged cells. They are often regulated by phosphorylation, affecting their catalytic activity. Here is the latest research on BCL-2 family proteins.