Inference of clonal selection in cancer populations using single-cell sequencing data

BioRxiv : the Preprint Server for Biology
Vyacheslau TsivinaPavel Skums

Abstract

Intra-tumor heterogeneity is one of the major factors influencing cancer progression and treatment outcome. However, evolutionary dynamics of cancer clone populations remain poorly understood. Quantification of clonal selection and inference of fitness landscapes of tumors is a key step to understanding evolutionary mechanisms driving cancer. These problems could be addressed using single cell sequencing, which provides an unprecedented insight into intra-tumor heterogeneity allowing to study and quantify selective advantages of individual clones. Here we present SCIFIL, a computational tool for inference of fitness landscapes of heterogeneous cancer clone populations from single cell sequencing data. SCIFIL allows to estimate maximum likelihood fitnesses of clone variants, measure their selective advantages and order of appearance by fitting an evolutionary model into the tumor phylogeny. We demonstrate the accuracy and utility of our approach on simulated and experimental data. SCIFIL can be used to provide new insight into the evolutionary dynamics of cancer. Its source code is available at https://github.com/compbel/SCIFIL .

Related Concepts

Malignant Neoplasms
Clone Cells
Neoplasms
Gene Mutant
Landscapes
Population Group
Nucleic Acid Sequencing
Clone
Cancer Progression
Study

Related Feeds

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.