Oct 22, 2016

Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with polynomial functions

BioRxiv : the Preprint Server for Biology
Ying ZhouShuhua Xu

Abstract

To infer the histories of population admixture, one important challenge with methods based on the admixture linkage disequilibrium (ALD) is to get rid of the effect of source LD (SLD) which is directly inherited from source populations. In previous methods, only the decay curve of weighted LD between pairs of sites whose genetic distance were larger than a certain starting distance was fitted by single or multiple exponential functions, for the inference of recent single- or multiple-wave of admixture. However, the effect of SLD has not been well defined and no tool has been developed to estimate the effect of SLD on weighted LD decay. In this study, we defined the SLD in the formularized weighted LD statistic under the two-way admixture model, and proposed polynomial spectrum (p-spectrum) to study the weighted SLD and weighted LD. We also found reference populations could be used to reduce the SLD in weighted LD statistic. We further developed a method, iMAAPs, to infer Multiple-wave Admixture by fitting ALD using Polynomial spectrum. We evaluated the performance of iMAAPs under various admixture models in simulated data and applied iMAAPs into analysis of genome-wide single nucleotide polymorphism data from the Human Genome D...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Lipid Droplet
Genome
Projections and Predictions
SLC17A5
Dysequilibrium Syndrome
Alcoholic Liver Diseases
Liver Diseases
Spectrum-4
Site

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.