Apr 23, 2020

Host association induces genome changes in Candida albicans which alters its virulence

BioRxiv : the Preprint Server for Biology
A. C. Smith, Meleah A Hickman

Abstract

Candida albicans is an opportunistic fungal pathogen of humans that is typically diploid yet, has a highly labile genome that is tolerant of large-scale perturbations including chromosomal aneuploidy and loss-of-heterozygosity events. The ability to rapidly generate genetic variation is crucial for C. albicans to adapt to changing or stress environments, like those encountered in the host. Genetic variation occurs via stress-induced mutagenesis or can be generated through its parasexual cycle, which includes mating between diploids or stress-induced mitotic defects to produce tetraploids and non-meiotic ploidy reduction. However, it remains largely unknown how genetic background contributes to C. albicans genome instability in vitro or in vivo. Here, we tested how genetic background, ploidy, and host environment impact C. albicans genome stability. We found that host association induced both loss-of-heterozygosity events and genome size changes, regardless of genetic background or ploidy. However, the magnitude and types of genome changes varied across C. albicans strains. We also assessed whether host-induced genomic changes resulted in any consequences on growth rate and virulence phenotypes and found that many host-derived i...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Impacted Tooth
Spatial Distribution
Environment
Controlled Study
Cell Growth
Species
Population Group
Landscapes
Shapes

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.