May 31, 2014

Myoelectric digit action decoding with multi-label, multi-class classification: an offline analysis

BioRxiv : the Preprint Server for Biology
Baohu JiXianjin Zhou

Abstract

The ultimate goal of machine learning-based myoelectric control is simultaneous and independent control of multiple degrees of freedom (DOFs), including wrist and digit artificial joints. For prosthetic finger control, regression-based methods are typically used to reconstruct position/velocity trajectories from surface electromyogram (EMG) signals. Although such methods have produced highly-accurate results in offline analyses, their success in real-time prosthesis control settings has been rather limited. In this work, we propose action decoding, a paradigm-shifting approach for independent, multi-digit movement intent decoding based on multi-label, multi-class classification. At each moment in time, our algorithm classifies movement action for each available DOF into one of three categories: open, close, or stall (i.e., no movement). Despite using a classifier as the decoder, arbitrary hand postures are possible with our approach. We analyse a public dataset previously recorded and published by us, comprising measurements from 10 able-bodied and two transradial amputee participants. We demonstrate the feasibility of using our proposed action decoding paradigm to predict movement action for all five digits as well as rotation...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
In Vivo
Fusion Gene
Pathogenic Aspects
GRIN1
Pathogenesis
DISC1
GAD1
Genes
Schizophrenia

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society
Chris Wilson Antuvan, Lorenzo Masia
North Carolina Medical Journal
Lisa Edgerton
© 2020 Meta ULC. All rights reserved