Jun 27, 2014

Integrating diverse datasets improves developmental enhancer prediction

PLoS Computational Biology
Genevieve ErwinJohn A Capra

Abstract

Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other emb...Continue Reading

Mentioned in this Paper

Embryo
Severe Acute Respiratory Syndrome
Genome-Wide Association Study
In Vivo
EP300 protein, human
Nucleosomes
Patterns
Neural Tube
RCHY1 gene
Histone antigen

Related Feeds

BioHub - Researcher Network

The Chan-Zuckerberg Biohub aims to support the fundamental research and develop the technologies that will enable physicians to cure, prevent, or manage all diseases in our childrens' lifetimes. The CZ Biohub brings together researchers from UC Berkeley, Stanford, and UCSF. Find the latest research from the CZ Biohub researcher network here.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Cardiac Regeneration

Cardiac regeneration enables the repair of irreversibly damaged heart tissue using cutting-edge science, including stem cell and cell-free therapy. Discover the latest research on cardiac regeneration here.

Allergy and Asthma

Allergy and asthma are inflammatory disorders that are triggered by the activation of an allergen-specific regulatory t cell. These t cells become activated when allergens are recognized by allergen-presenting cells. Here is the latest research on allergy and asthma.

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.