Mar 16, 2016

Integration of Orthogonal Signaling by the Notch and Dpp Pathways in Drosophila

Elizabeth Stroebele, Albert Erives


The transcription factor Suppressor of Hairless and its coactivator, the Notch intracellular domain, are polyglutamine (pQ)-rich factors that target enhancer elements and interact with other locally bound pQ-rich factors. To understand the functional repertoire of such enhancers, we identify conserved regulatory belts with binding sites for the pQ-rich effectors of both Notch and BMP/Dpp signaling, and the pQ-deficient tissue selectors Apterous (Ap), Scalloped (Sd), and Vestigial (Vg). We find that the densest such binding site cluster in the genome is located in the BMP-inducible nab locus, a homolog of the vertebrate transcriptional cofactors NAB1/NAB2 We report three major findings. First, we find that this nab regulatory belt is a novel enhancer driving dorsal wing margin expression in regions of peak phosphorylated Mad in wing imaginal discs. Second, we show that Ap is developmentally required to license the nab dorsal wing margin enhancer (DWME) to read out Notch and Dpp signaling in the dorsal compartment. Third, we find that the nab DWME is embedded in a complex of intronic enhancers, including a wing quadrant enhancer, a proximal wing disc enhancer, and a larval brain enhancer. This enhancer complex coordinates global ...Continue Reading

  • References100
  • Citations1


Mentioned in this Paper

Biochemical Pathway
Receptors, Notch
Surgical margins
Conserved Sequence
Bounded by
Nanoparticle Albumin-Bound Rapamycin
Body Fluid Compartments
Pecten jacobaeus homeopathic preparations

Related Feeds

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.