PMID: 46215Feb 1, 1975

Interaction of complex polysaccharides with the complement system: effect of calcium depletion on terminal component consumption

Infection and Immunity
R Snyderman, M C Pike

Abstract

Complex polysaccharides and lipopolysaccharides can activate the terminal components of complement by either the classical (antibody, C1, C4, and C2) or alternative complement pathways, but the relative importance of either pathway for terminal component consumption in normal serum is poorly understood. Since classical complement pathway function requires both calcium and magnesium ions, whereas the alternative pathway requires only magnesium ions, selective chelation of calcium ions in serum can be used to block the classical complement pathway while leaving the alternative pathway intact. In these studies, ethyleneglycol-bis-(beta-aminoethyl ether)N, N-tetraacetic acid, a potent chelator or calcium, was used to block the classical complement pathway in normal guinea pig serum. Consumption of the terminal complement components by endotoxin, inulin, and zymosan in such serum was strikingly depressed when compared to serum containing an intact classical complement pathway. These studies demonstrate that in normal serum, both the classical and alternative complement pathways participate in the consumption of the terminal complement components by complex polysaccharides and lipopolysaccharides.

Citations

Jan 1, 1985·Critical Reviews in Microbiology·F Quimby, H T Nguyen
Nov 1, 1977·CRC Critical Reviews in Toxicology·L J Berry
Apr 11, 2014·Clinical and Vaccine Immunology : CVI·Jae Seung YangSeung Hyun Han
Jan 1, 1978·Scandinavian Journal of Immunology·R WinsnesO J Mellbye
Jan 1, 1980·Scandinavian Journal of Infectious Diseases. Supplementum
Jan 1, 1989·Critical Reviews in Toxicology·D B Warheit
Feb 13, 2001·Infection and Immunity·B J WilliamsA L Smith

Related Concepts

Calcium
Metal Antagonists
Hemolytic Complement
Endotoxins
Erythrocytes
Gamma globulin
Cavia porcellus
Hemolysis
Inulin
Lipopolysaccharides

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.