Interaction of diiodo-L-tyrosine and triiodophenol with bovine serum albumin. Circular dichroism and fluorescence studies

Journal of Biochemistry
N OkabeK Tomita


As a model study to investigate the binding mechanism between thyroid hormones and carrier protein, the interaction of diiodo-L-tyrosine (DIT) and triiodophenol (I3phi) with bovine serum albumin (BSA) was investigated by circular dichroism (CD) and fluorescence methods. In both the DIT-BSA system and the I3phi-BSA system, induced Cotton effect was observed in the wavelength region near 320 nm. This induced Cotton effect was measured at various molar ratios of ligands to BSA (L/P). The value of the ellipticity at 319 nm, [theta]319, in the I3phi-BSA system was remarkably large compared with that of the DIT-BSA system, and [theta]319 at an L/P ratio of one was -1.96 X 10(4) (degree cm2 decimole-1) for the I3phi-BSA system and -0.1 X 10(4) for the DIT-BSA system. The binding constants for the combination of BSA with a single molecule of ligand, calculated by measuring the quenching of the fluorescence of the protein, were 1.33 X 10(5) M(-1) at 15 degrees for the DIT-BSA system and 1.6 X 10(9) M(-1) at 28 degrees for the I3theta-BSA system. These results suggest that the binding of I3theta to BSA is stronger than that of DIT and a cleft may exist more congruent with the molecular dimensions of I3theta than with those of DIT.

Related Concepts

Circular Dichroism, Vibrational
Hydrogen-Ion Concentration
Plasma Protein Binding Capacity
Serum Albumin, Bovine
Fluorescence Spectroscopy

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Systemic Juvenile Idiopathic Arthritis

Systemic juvenile idiopathic arthritis is a rare rheumatic disease that affects children. Symptoms include joint pain, but also fevers and skin rashes. Here is the latest on this disease.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Pontocerebellar Hypoplasia

Pontocerebellar hypoplasias are a group of neurodegenerative autosomal recessive disorders with prenatal onset, atrophy or hypoplasia of the cerebellum, hypoplasia of the ventral pons, microcephaly, variable neocortical atrophy and severe mental and motor impairments. Here is the latest research on pontocerebellar hypoplasia.

Cell Atlas Along the Gut-Brain Axis

Profiling cells along the gut-brain axis at the single cell level will provide unique information for each cell type, a three-dimensional map of how cell types work together to form tissues, and insights into how changes in the map underlie health and disease of the GI system and its crosstalk with the brain. Disocver the latest research on single cell analysis of the gut-brain axis here.

Chronic Traumatic Encephalopathy

Chronic Traumatic Encephalopathy (CTE) is a progressive degenerative disease that occurs in individuals that suffer repetitive brain trauma. Discover the latest research on traumatic encephalopathy here.