Apr 14, 1976

Interactions between hemoglobin and organic phosphates investigated with 31P nuclear magnetic resonance spectroscopy and ultrafiltration

Biochimica Et Biophysica Acta
A J CostelloT O Henderson


1. The chemical shifts (delta) of the phosphates of 2,3-diphosphoglycerate and adenosine triphosphate (ATP) were determined by phosphorus nuclear magnetic resonance (31P NMR) spectroscopy and were found to be displaced downfield following the addition of hemoglobin (3 mM) to a solution of either diphosphoglycerate (5 mM) or ATP (1 mM). 2. The binding of these compounds to hemoglobin was also determined by membrane ultrafiltration. A direct relationship was observed between the change in chemical shift ((delta delta) of the 2-P and 3-P of diphosphoglycerate and the percent diphosphoglycerate bound, when the latter was varied by altering pH, oxygenation state, or total diphosphoglycerate concentration. 3. In comparable studies with ATP binding, a linear relationship between the delta delta values of the gamma-, beta-, and alpha-P of ATP and the percent of ATP bound was not observed when the data from all of the experiments were plotted. NMR signals were not detectible in deoxyhemoglobin solutions containing 1 mM ATP but were seen in solutions containing 3.8 mM ATP. 4. The results indicate that 31P NMR spectroscopy is a promising tool for investigating organic phosphate interactions with hemoglobin.

Mentioned in this Paper

ATP Binding
In Vivo NMR Spectroscopy
Alveolar Ventilation Function
Magnetic Resonance Imaging
Cell Respiration
Phosphate Measurement
Plasma Protein Binding Capacity
Phosphorus Measurement
Diphosphoglyceric Acids

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.