Apr 21, 2020

Melanocyte differentiation and epidermal pigmentation is regulated by polarity proteins

BioRxiv : the Preprint Server for Biology
S. K. Knapp, Sandra Iden

Abstract

Pigmentation serves various purposes such as protection, camouflage, or attraction. In the skin epidermis, melanocytes react to certain environmental signals with melanin production and release, thereby ensuring photo-protection. For this, melanocytes acquire a highly polarized and dendritic architecture that facilitates interactions with surrounding keratinocytes and melanin transfer. How the morphology and function of these neural crest-derived cells is regulated remains poorly understood. Here, using mouse genetics and primary cell cultures, we show that conserved proteins of the mammalian Par3-aPKC polarity complex are required for epidermal pigmentation. Melanocyte-specific deletion of Par3 in mice caused skin hypopigmentation, reduced expression of components of the melanin synthesis pathway, and altered dendritic morphology. Mechanistically, Par3 was necessary downstream of -melanocyte stimulating hormone (-MSH) to elicit melanin production. Strikingly, pharmacologic activation of MITF using a salt-inducible kinase inhibitor was sufficient to restore melanocyte differentiation and skin pigmentation in the absence of Par3. This data reveals a central role of polarity proteins in transmitting external pigment-inducing sign...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Embryo
Biochemical Pathway
Patterns
Cell Fate
Nodal Signaling Pathway
Entire Embryo
Mandibular Right Second Primary Molar
Enhanced S-Cone Syndrome
Axial
WNT1

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cadherins and Catenins

Cadherins (named for "calcium-dependent adhesion") are a type of cell adhesion molecule (CAM) that is important in the formation of adherens junctions to bind cells with each other. Catenins are a family of proteins found in complexes with cadherin cell adhesion molecules of animal cells: alpha-catenin can bind to β-catenin and can also bind actin. β-catenin binds the cytoplasmic domain of some cadherins. Discover the latest research on cadherins and catenins here.

Adherens Junctions

An adherens junction is defined as a cell junction whose cytoplasmic face is linked to the actin cytoskeleton. They can appear as bands encircling the cell (zonula adherens) or as spots of attachment to the extracellular matrix (adhesion plaques). Adherens junctions uniquely disassemble in uterine epithelial cells to allow the blastocyst to penetrate between epithelial cells. Discover the latest research on adherens junctions here.