Interdependent Phenotypic and Biogeographic Evolution Driven by Biotic Interactions

BioRxiv : the Preprint Server for Biology
Ignacio Quintero, Michael J Landis

Abstract

Biotic interactions are hypothesized to be one of the main processes shaping trait and biogeographic evolution during lineage diversification. Theoretical and empirical evidence suggests that species with similar ecological requirements either spatially exclude each other, by preventing the colonization of competitors or by driving coexisting populations to extinction, or show niche divergence when in sympatry. However, the extent and generality of the effect of interspecific competition in trait and biogeographic evolution has been limited by a dearth of appropriate process-generating models to directly test the effect of biotic interactions. Here, we formulate a phylogenetic parametric model that allows interdependence between trait and biogeographic evolution, thus enabling a direct test of central hypotheses on how biotic interactions shape these evolutionary processes. We adopt a Bayesian data augmentation approach to estimate the joint posterior distribution of trait histories, range histories, and co-evolutionary process parameters under this analytically intractable model. Through simulations, we show that our model is capable of distinguishing alternative scenarios of biotic interactions. We apply our model to the radi...Continue Reading

Related Concepts

Biological Evolution
Protein S
Dorsal
Theory of Evolution
Shapes
Adaptation
In Situ
Size
Simulation
Drug Interactions

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.