Feb 1, 2019

Interference Effects of Deleterious and Beneficial Mutations in Large Asexual Populations

Genetics
Kavita Jain

Abstract

Linked beneficial and deleterious mutations are known to decrease the fixation probability of a favorable mutation in large asexual populations. While the hindering effect of strongly deleterious mutations on adaptive evolution has been well studied, how weakly deleterious mutations, either in isolation or with superior beneficial mutations, influence the rate of adaptation has not been fully explored. When the selection against the deleterious mutations is weak, the beneficial mutant can fix in many genetic backgrounds, besides the one it arose on. Here, taking this factor into account, I obtain an accurate analytical expression for the fixation probability of a beneficial mutant in an asexual population at mutation-selection balance. I then exploit this result along with clonal interference theory to investigate the joint effect of linked beneficial and deleterious mutations on the rate of adaptation, and identify parameter regions where it is reduced due to interference by either beneficial or deleterious or both types of mutations. I also study the evolution of mutation rates in adapting asexual populations, and find that linked beneficial mutations have a stronger influence than the deleterious mutations on mutator fixation.

  • References33
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Reproduction, Asexual
Isolation Aspects
Haploid Cell
Clone
Adaptation
Mutant
Genetic Fitness
Asexual
Fixation - Action
Population Group

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.