DOI: 10.1101/490292Dec 7, 2018Paper

Interregional causal influences of brain metabolic activity reveal the spread of aging effects during normal aging

BioRxiv : the Preprint Server for Biology
Xin Di

Abstract

During healthy brain aging, different brain regions show anatomical or functional declines at different rates, and some regions may show compensatory increases in functional activity. However, few studies have explored interregional influences of brain activity during the aging process. We proposed a causality analysis framework combining high dimensionality independent component analysis (ICA), Granger causality, and LASSO (least absolute shrinkage and selection operator) regression on longitudinal brain metabolic activity data measured by Fludeoxyglucose positron emission tomography (FDG-PET). We analyzed FDG-PET images from healthy old subjects, who were scanned for at least five sessions with an averaged intersession interval of about year. The longitudinal data were concatenated across subjects to form a time series, and the first order autoregressive model was used to measure interregional causality among the independent sources of metabolic activity identified using ICA. Several independent sources with reduced metabolic activity in aging, including the anterior temporal lobe and orbital frontal cortex, demonstrated causal influences over many widespread brain regions. On the other hand, the influenced regions were more ...Continue Reading

Related Concepts

Aging
Brain
Positron-Emission Tomography
Temporal Lobe
Research Subject
Scanning
Brain Metabolism
Protein Metabolism Process
Anatomic Structures
Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Aging (Keystone)

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.

Brain Aging

Here is the latest research on intrinsic and extrinsic factors, as well as pathways and mechanisms that underlie aging in the central nervous system.

Cell Aging

This feed focuses on cellular aging with emphasis on mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.

Cell Aging (Preprints)

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.