Intracellular calcium stores mediate a synapse-specific form of metaplasticity at hippocampal dendritic spines

BioRxiv : the Preprint Server for Biology
Gaurang Mahajan, Suhita Nadkarni


Long-term plasticity mediated by NMDA receptors supports input-specific, Hebbian forms of learning at excitatory CA3-CA1 connections in the hippocampus. An additional layer of stabilizing mechanisms that act globally as well as locally over multiple time scales may be in place to ensure that plasticity occurs in a constrained manner. Here, we investigate the potential role of calcium (Ca2+) stores associated with the endoplasmic reticulum (ER) in the local regulation of plasticity dynamics at individual CA1 synapses. Our study is spurred by (1) the curious observation that ER is sparsely distributed in dendritic spines, but over-represented in large spines that are likely to have undergone activity-dependent strengthening, and (2) evidence suggesting that ER motility within synapses can be rapid, and accompany activity-regulated spine remodeling. Based on a physiologically realistic computational model for ER-bearing CA1 spines, we characterize the contribution of IP3-sensitive Ca2+ stores to spine Ca2+ dynamics during activity patterns mimicking the induction of long-term potentiation (LTP) and depression (LTD). Our results suggest graded modulation of the NMDA receptor-dependent plasticity profile by ER, which selectively enh...Continue Reading

Related Concepts

Action Potentials
Cell Motility
Mental Depression
Endoplasmic Reticulum
Hippocampus (Brain)
Vertebral Column

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.