PMID: 40983Nov 25, 1979

Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function

The Journal of Biological Chemistry
D R PfeifferH H Schmid


Liver mitochondria treated with N-ethylmaleimide can accumulate Ca2+ but cannot retain it. Ca2+ loss following uptake occurs in parallel with a proton uptake and collapse of the membrane potential. Respiration is not activated during Ca2+ release and cannot be stimulated by uncoupler. After Ca2+ release and accompanying phenomena are nearly complete, the mitochondria undergo a large amplitude swelling. Nupercaine inhibits the premature release of Ca2+, proton uptake, decline in membrane potential, inhibition of uncoupler-stimulated respiration, and large amplitude swelling. Ruthenium red also prevents these effects. Neither Sr2+ or Mn2+ will substitute for Ca2+ to induce these effects in N-ethylmaleimide-treated mitochondria. The effects of N-ethylmaleimide plus Ca2+ on mitochondria are not accompanied by a significant alteration in the content or composition of phospholipids but are accompanied by small increases in the mitochondrial content of free fatty acids. Free fatty acids accumulate more rapidly in response to limited Ca2+ loading in the absence of N-ethylmaleimide than they do in its presence. In the absence of N-ethylmaleimide, polyunsaturated fatty acids and saturated plus monounsaturated fatty acids accumulate at ne...Continue Reading

Related Concepts

Hydrogen-Ion Concentration
Intracellular Membranes
Resting Potentials
Mitochondria, Liver
Mitochondrial Swelling
Oxygen Consumption
Palmitic Acids

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.