Sep 1, 1989

Intrastriatal grafts derived from fetal striatal primordia. I. Phenotypy and modular organization

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
A M GraybielS B Dunnett

Abstract

Fetal striatal grafts display a striking modularity of composition. With acetylcholinesterase (AChE) histochemistry, the tissue of such grafts can be divided into regions with strong AChE staining of the neuropil and regions in which AChE staining of the neuropil is weak. In the experiments reported here, we reexamined the nature of this modularity. Striatal grafts were made by injecting dissociated cells of E15 ganglionic eminence into the striatum of adult rats, which 7 days before had recived intrastriatal deposits of ibotenic acid. Some donors had been exposed to 3H-thymidine at E11-E15. After 9-17 month survivals, the anatomical organization of the grafts was studied by histochemistry, immunohistochemistry, and autoradiography. In every graft, the AChE-rich regions formed patches (P regions) in a larger AChE-poor surround (NP regions). Neurons labeled with 3H-thymidine appeared in both P and NP regions, suggesting that donor cells were distributed in each type of region and that neither type of tissue, P or NP, was composed exclusively of host tissue. In the AChE-rich P regions, markers characteristic of normal perinatal and mature rat striatum were expressed by medium-sized cells: calcium-binding protein (calbindin D28k) ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Antigens, Differentiation
Fetal Structures
Calbindin 1
Immunohistochemistry
Immunoreactivity
Neuropil
Neostriatum
Thymidine
Ache
Paleostriatum

About this Paper

Related Feeds

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.