Nov 5, 2018

Introducing double bouquet cells into a modular cortical associative memory model

BioRxiv : the Preprint Server for Biology
Nikolaos ChrysanthidisA Lansner


We present an electrophysiological model of double bouquet cells and integrate them into an established cortical columnar microcircuit model that has previously been used as a spiking attractor model for memory. Learning in that model relies on a Bayesian-Hebbian learning rule to condition recurrent connectivity between pyramidal cells. We here demonstrate that the inclusion of a biophysically plausible double bouquet cell model can solve earlier concerns about learning rules that simultaneously learn excitation and inhibition and might thus violate Dale's Principle. We show that learning ability and resulting effective connectivity between functional columns of previous network models is preserved when pyramidal synapses onto double-bouquet cells are plastic under the same Hebbian-Bayesian learning rule. The proposed architecture draws on experimental evidence on double bouquet cells and effectively solves the problem of duplexed learning of inhibition and excitation by replacing recurrent inhibition between pyramidal cells in functional columns of different stimulus selectivity with a plastic disynaptic pathway. We thus show that the resulting change to the microcircuit architecture improves the model's biological plausibilit...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Dental Models
Biochemical Pathway
Neuronal Plasticity
Structure of Cortex of Kidney
Biologic Preservation
Metabolic Inhibition
Pyramidal Cells
BSTA protein, human

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.