Investigation on the requirements for YbbN/CnoX displaying thiol-disulfide oxidoreductase and chaperone activities

BioRxiv : the Preprint Server for Biology
Diogo de Abreu MeirelesL. E. S. Netto


YbbN/CnoX are proteins that display a Trx domain linked to a tetratricopeptide (TPR) domain, which are involved in protein-protein interactions and protein folding processes. YbbN from Escherichia coli (EcYbbN) displays a co-chaperone (holdase) activity that is induced by HOCl (bleach). EcYbbN contains a SQHC motif within the Trx domain and displays no thiol-disulfide oxidoreductase activity. EcYbbN also presents a second Cys residue at Trx domain (Cys63) 24 residues away from SQHF motif that can form mixed disulfides with substrates. Here, we compared EcYbbN with two other YbbN proteins: from Xylella fastidiosa (XfYbbN) and from Pseudomonas aeruginosa (PaYbbN). While EcYbbN displays two Cys residues along a SQHC[N24]C motif; XfYbbN and PaYbbN present two and three Cys residues in the CAPC[N24]V and CAPC[N24]C motifs, respectively. These three proteins are representatives of evolutionary conserved YbbN subfamilies. In contrast to EcYbbN, both XfYbbN and PaYbbN: (1) reduced an artificial disulfide (5,5'-dithiobis-(2-nitrobenzoic acid) = DTNB); and (2) supported the peroxidase activity of Peroxiredoxin Q from X. fastidiosa, suggesting that in vivo these proteins might function similarly to the canonical Trx enzymes. Indeed, XfYbb...Continue Reading

Related Concepts

Biological Neural Networks
Biologic Segmentation
Chromatin Immunoprecipitation
Neural Network Simulation
Automatic Bladder
Chromatin Location
Hidden Markov Model

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.