May 1, 1985

Ionic and electrophysiological properties of retinal Müller (glial) cells of the turtle

The Journal of Physiology
J D ConnerP V Sarthy


The ionic and electrophysiological properties of Müller cells, the principal glial element of the vertebrate retina, were investigated. The membrane potential of enzymatically dissociated and in situ Müller cells was about -80 mV and depended on external K+ concentration in a manner that was described by the Goldman-Hodgkin-Katz equation with a Na+-K+ permeability ratio of 0.037. The current-voltage relation showed marked inward rectification, with the input resistance at the resting potential being about 30 M omega for dissociated cells and about 3 M omega for in situ cells. In situ Müller cells were found to be electrically coupled to each other which could explain their lower resistance. We conclude that Müller cells are similar to other types of glia. In spite of a finite Na+ permeability their membrane potential is determined mainly by K+, they are electrically inexcitable and form an electrically coupled network in the retina.

  • References
  • Citations14


  • We're still populating references for this paper, please check back later.

Mentioned in this Paper

Entire Retina
Resting Potentials
Retinal Diseases
Electric Conductivity
Ion Channel
Malignant Neoplasm of Retina

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.