PMID: 2889727Aug 1, 1987

Kinetic and equilibrium studies on the interaction of reduced flavoprotein D-amino acid oxidase with pyridine carboxylates

Journal of Biochemistry
Y NishinaK Shiga

Abstract

The equilibrium constants and the rate constants (binding and dissociation constants) between reduced D-amino acid oxidase and pyridine carboxylates were obtained at various pH values (from pH 6.0 to 8.3). The pH dependence of the constants is consistent with the previous conclusion from a resonance Raman study that pyridine carboxylates in the form of a cation protonated at the N atom can bind to the reduced enzyme, but those in the neutral form cannot bind, showing that the positive charge of cationic pyridine carboxylates interacts with the negative charge of the anionic reduced flavin in the reduced enzyme. The binding rate constants of picolinate and nicotinate in the cationic form for the reduced enzyme were quite similar to each other, but the dissociation rate constant of picolinate is several times smaller than that of nicotinate. Thus, it is concluded that the difference in affinity of picolinate and nicotinate for the reduced enzyme is derived from the difference of the dissociation rate constants.

Related Concepts

Picolinic acid, sodium salt
D-Amino Acid Dehydrogenase
Flavoproteins
Hydrogen-Ion Concentration
Kidney
Niacin Manganese (2+) Salt
Oxidation-Reduction
Picolinic Acids
Plasma Protein Binding Capacity

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.