PMID: 36402Jul 25, 1979

Kinetic studies on the reaction of p-hydroxybenzoate hydroxylase. Agreement of steady state and rapid reaction data

The Journal of Biological Chemistry
M Husain, V Massey

Abstract

p-Hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens is a NADPH-dependent, FAD-containing monooxygenase catalyzing the hydroxylation of p-hydroxybenzoate to form 3,4-dihydroxybenzoate in the presence of NADPH and molecular oxygen. The mechanism of this three-substrate reaction was investigated in detail at pH 6.6, 4 degrees C, by steady state kinetics, stopped flow spectrophotometry, and equilibrium binding experiments. The initial velocity patterns are consistent with a ping-pong type mechanism which involves two ternary complexes between the enzyme and substrates. The first ternary complex is formed by random addition of p-hydroxybenzoate and NADPH to the enzyme, followed by the release of the first product (NADP+). The reduced enzyme . p-hydroxybenzoate complex now reacts with oxygen, the third substrate, to form the second ternary complex. The enzyme-bound p-hydroxybenzoate then reacts with the activated oxygen to give 3,4-dihydroxybenzoate which is released regenerating the oxidized enzyme for the next cycle. The binding of p-hydroxybenzoate to the oxidized enzyme to form a 1:1 complex causes large, characteristic spectral perturbations and fluorescence quenching. The dissociation constant for the enzy...Continue Reading

Related Concepts

Jaundice, Obstructive
Complex (molecular entity)
3,4-dihydroxybenzoate
Fluorescence Spectroscopy
Spectrophotometry, Analyte Not Elsewhere Specified in CPT
Anaerobiosis
Spectrophotometry
NADP
Oxidation-Reduction
Titration Method

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.