Kinetics of DNA Repair in Ultraviolet-Irradiated and N-acetoxy-2-acetylaminofluorene-Treated Mammalian Cells

Biophysical Journal
F E Ahmed, R B Setlow

Abstract

Repair kinetics after saturating doses of ultraviolet radiation (UV), N-acetoxy-2-acetylaminofluorene (AAAF), and combinations of both agents were studied in human fibroblasts proficient and deficient in excision repair, and in Chinese hamster cells (V-79) deficient in excision repair. Three techniques were used: unscheduled DNA synthesis, photolysis of DNA repaired in the presence of bromodeoxyuridine (BrdUrd), and measurements of sites sensitive to a UV-endonuclease. The repair rate appears to be approximately constant during the first few hours after treatment. Later there is a decrease with time; the magnitude of the decrease depends on the cell line. Our data show that the decrease in repair observed in repair-deficient cells treated with combinations of both agents as compared to separate treatments is due neither to the cytotoxic effects of the agents used, nor to a shutoff of the repair system by the high concentrations of AAAF employed.

Citations

Mar 1, 1980·Mutation Research·M H Wade, P H Lohman
Feb 1, 1981·Mutation Research·R G Mallon, T G Rossman
Dec 1, 1994·Journal of Photochemistry and Photobiology. B, Biology·L T van den BroekeB van Henegouwen
Oct 1, 1984·Photochemistry and Photobiology·J A Maga, K Dixon
Nov 1, 1980·Photochemistry and Photobiology·F E Ahmed, R B Setlow
Jan 1, 1980·Environmental Mutagenesis·J Irwin, B Strauss

Related Concepts

Acetoxyacetylaminofluorene
Bromodeoxyuridine
DNA Repair
Fibroblasts
UV endonuclease
Cell Line, Tumor
Site
DNA Repair-Deficiency
DNA Replication
Excision

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Torsion Dystonia

Torsion dystonia is a movement disorder characterized by loss of control of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. Here is the latest research.

Generating Insulin-Secreting Cells

Reprogramming cells or using induced pluripotent stem cells to generate insulin-secreting cells has significant therapeutic implications for diabetics. Here is the latest research on generation of insulin-secreting cells.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.

Epigenome Editing

Epigenome editing is the directed modification of epigenetic marks on chromatin at specified loci. This tool has many applications in research as well as in the clinic. Find the latest research on epigenome editing here.