Feb 27, 2003

Lactobacillus plantarum inhibits the intestinal epithelial migration of neutrophils induced by enteropathogenic Escherichia coli

Journal of Pediatric Gastroenterology and Nutrition
Sonia Michail, Frank Abernathy

Abstract

Lactobacillus plantarum is a Gram-positive bacillus known for its effect as a probiotic agent. The goal of the study was to determine whether L. plantarum is capable of inhibiting the transepithelial neutrophil migration induced by enteropathogenic Escherichia coli (EPEC). Cultured intestinal epithelial T-84 cell monolayers were rapidly infected with EPEC. L. plantarum or culture supernatants were added to the monolayers before and after the infection. Indium-labeled neutrophils were added to the basolateral side of inverted monolayers. After 150-minute incubation, radioactivity of the neutrophils that migrated in the physiologic direction was assayed, and the number of migrating neutrophils was calculated. L. plantarum was also added to the monolayers before and after EPEC infection, and the number of adherent EPEC was determined by plate counting. EPEC-induced neutrophil migration and EPEC binding to monolayers were inhibited by viable L. plantarum but only when added to the monolayers before EPEC. Culture supernatants failed to inhibit the neutrophil migration. These results suggest that L. plantarum is beneficial in inhibiting neutrophil migration induced by EPEC, but only when preincubated with host epithelia. Rather than ...Continue Reading

  • References21
  • Citations15

References

  • References21
  • Citations15

Citations

Mentioned in this Paper

Neutrophil Band Cells
Alkalescens-Dispar Group
Neutrophil Migration, Function
Neutrophils as Percentage of Blood Leukocytes (Lab Test)
NM gene
Structure of Intestinal Gland
Absolute Neutrophil Count
Indium, Homeopathic preparation
Neutrophil Activation
Bacterial Adhesion

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.