Oct 1, 1977

Lectin and human blood group determinants of Schistosoma mansoni: alteration following in vitro transformation of miracidium to mother sporocyst

The Journal of Parasitology
T P YoshinoL R Renwrantz

Abstract

A mixed agglutination assay method was employed to detect the presence of surface determinants for various lectins and human blood group antibodies on Schistosoma mansoni miracidia and cultured mother sporocysts. Miracidia were found to possess surface receptors for the lectins Con A (concanavalin A), anti-Heel (eel serum agglutinin), and anti-ADb (Dolichos seed extract), as well as human anti-A antibodies. Following in vitro transformation of the miracidium to mother sporocyst, anti-Heel and human anti-A receptors were no longer detectable on the sporocyst surface, while determinants for Con A and anti-ADb remained essentially unaltered. It is concluded that transition of the miracidium to the sporocyst results in the alteration of surface molecular structures on schistosome larve. Furthermore, since determinants for Con A, anti-Heel, anti ADb, and human anti-A have been found associated with macromolecules in the hemolymph of the snail Biomphalaria glabrata (Stnislawski et al., 1976), there is now evidence that miracidia and mother sporocysts of S. mansoni and their snail host share molecules with common lectin and human blood group determinants.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Binding Sites, Antibody
Hemolymph
Antigenic Specificity
Helix (Snails)
Isoantibodies
Schistosoma mansoni antigen
Neonatal Torulopsis Glabrata Fungemia
Macromolecule
Lectin Activity
Agglutinins

About this Paper

Related Feeds

Antibodies: Agglutination

Antibody-mediated agglutination is the clumping of cells in the presence of antibody, which binds multiple cells together. This enhances the clearance of pathogens. Find the latest research on antibody-mediated agglutination here.